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ABSTRACT

We present a new method how to discriminate the matter content of parsec-scale jets
of active galactic nuclei. By constraining the kinetic luminosity of a jet from the observed
core size at a single very long baseline interferometry frequency, we can infer the electron
density of a radio-emitting component as a function of the composition. Comparing
this density with that obtained from the theory of synchrotron self-absorption, we can
determine the composition. We apply this procedure to the five components in the 3C 345
jet and find that they are likely pair-plasma dominated at 11 epochs out of the total 21
epochs, provided that the bulk Lorentz factor is less than 15 throughout the jet. We also
investigate the composition of the 3C 279 jet and demonstrate that its two components
are likely pair-plasma dominated at three epochs out of four epochs, provided that their
Doppler factors are less than 10, which are consistent with observations. The conclusions
do not depend on the lower cutoff energy of radiating particles.

Subject headings: galaxies: active — quasars: individual (3C 345) — quasars: individual
(3C 279) — radio continuum: galaxies
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1. Introduction

The study of extragalactic jets on parsec scales is
astrophysically interesting in the context of the ac-
tivities of the central engines of active galactic nuclei
(AGN). In particular, a determination of their mat-
ter content would be an important step in the study
of jet formation, propagation and emission. There
are two main candidates for their matter content:
A ‘normal plasma’ consisting of (relativistic or non-
relativistic) protons and relativistic electrons (Celotti
and Fabian 1993; see also Gómez et al. 1993, 1994a,b
for numerical simulations of shock fronts in such a
jet) and a ‘pair plasma’ consisting only of relativis-
tic electrons and positrons (e.g., Kino and Takahara
2004). Discriminating between these possibilities is
crucial for understanding the physical processes oc-
curring close to the central engine (presumably a su-
permassive black hole) in the nucleus.

Very long baseline interferometry (VLBI) is uniquely
suited to the study of the matter content of pc-scale
jets, because other observational techniques cannot
image at milliarcsecond resolution and must resort to
indirect means of studying the active nucleus. So far,
there have been two observational approaches with
VLBI to discriminate jet compositions: polarization
(Wardle et al. 1998) and spectroscopic (Reynolds et
al. 1996) techniques.

Wardle et al. (1998) observed the 3C 279 jet at 15
and 22 GHz. They examined the circular polarization
(∼ 1%) due to Faraday conversion of linear to circu-
lar polarization caused by low-energy electrons and
derived that the lowest Lorentz factor, γmin, of radi-
ating particles, should be much less than 102. They
also analyzed the linear polarization (∼ 10%), which
strongly limits internal Faraday rotation to derive
that γmin ≫ 102 must be held for a normal-plasma
composition and that no constraint would be obtained
for a pair-plasma composition. (Note that an equal
mixture of electrons and positrons can produce Fara-
day conversion, but not rotation.) From these argu-
ments, they concluded that component CW of the
3C 279 jet consists of a pair plasma with γmin ≪ 102.

On the other hand, Reynolds et al. (1996) ana-
lyzed historical VLBI data of the M87 jet at 5 GHz
(Pauliny-Toth et al. 1981) and concluded that the
core is probably dominated by an e± plasma. In
the analysis, they utilized the standard theory of syn-
chrotron self absorption (SSA) to constrain the mag-
netic field, B [G], and gave B = 0.2 G (line B in fig-

ure 1). They also considered the condition that the re-
solved core becomes optically thick for self-absorption
and derived another constraint on N∗

e and B. Using
the observed angular diameter of the core (0.7mas),
the total core flux density (1.0 Jy) at 5 GHz, and the
reported viewing angle (30◦−40◦), and assuming that
the spectral index is 0.5 (see end of this section), they
derived N∗

e B2 > 2δ−1
max in cgs unit (line C in figure 1),

where δmax (= 2 for the M87 core) refers to the upper
limit of the Doppler factor of the fluid’s bulk motion.

This condition is, however, applicable only for the
VLBI observations of M87 core at epochs September
1972 and March 1973. Therefore, in order to apply
the analogous method to other AGN jets or to the
M87 jet at other epochs, we must derive a more gen-
eral condition.

On these grounds, Hirotani et al. (1999, hereafter
Paper I) generalized the condition N∗

e B2 > 2δ−2
max and

applied it to the 3C 279 jet on parsec scales. In that
paper, they revealed that the core and components
C3 and C4, of which spectra are reported, are likely
dominated by a pair plasma. It is interesting to note
that the same conclusion was derived by an indepen-
dent method by Wardle et al. (1998) on component
CW in the 3C 279.

Subsequently, Hirotani et al. (2000, hereafter Pa-
per II) applied the same method to the 3C 345
jet. Deducing the kinetic luminosity, Lkin, from a
reported core-position offset (Lobanov 1998), they
demonstrated that components C2, C3, and C4 at
epoch 1982.0, C5 at 1990.55, and C7 at four epochs
are likely dominated by a pair plasma. In the present
paper, we propose a new scheme to deduce the kinetic
luminosity of an unresolved core and re-examine the
composition of the two blazers 3C 345 and 3C 279,
adding spectral information at 11 epochs for the
3C 345 jet to Paper II and and 2 epochs for the 3C 279
jet to Paper I.

In the next section, we give a general expression of
lines B and C in figure 1. We then describe in § 3 a
new method how to infer Lkin from the core size ob-
served at a single VLBI frequency; the inferred Lkin

gives lines D1 and D2 in figure 1, depending on the
composition. Once Lkin is obtained for the core by
this method, we can apply it to individual jet com-
ponents, assuming a constant Lkin along the jet. In
sections 4 and 5, we examine the two blazers 3C 345
and 3C 279. In the final section, we discuss the pos-
sibility of the entrainment of the ambient matter as a
jet propagates downstream.
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We use a Hubble constant H0 = 65h km/s/Mpc
and q0 = 0.5 throughout this paper. Spectral index
α is defined such that Sν ∝ ν+α.

2. Synchrotron self-absorption constraint in

the jet region

In this paper, we model a jet component as a homo-
geneous sphere of angular diameter θd, containing a
tangled magnetic field B [G] and relativistic electrons,
which give a synchrotron spectrum with optically thin
index α. In § 2.1, we constrain B (i.e., line B in fig. 1)
for arbitrary optical thickness by the theory of syn-
chrotron self-absorption. Once B is obtained, we can
compute the electron number density N∗

e (SSA) (i.e.,
line C) as will be described in § 2.2 with the aid of the
computed optical depth at the turnover frequency.

2.1. Magnetic field strength

The magnetic field strength, B, can be computed
from the synchrotron spectrum, which is character-
ized by the peak frequency, νm, the peak flux density,
Sm, and the spectral index, α, in the optically thin
regime. Marscher (1983) considered a uniform spher-
ical synchrotron source and related B with νm, Sm,
and α for optically thin cases (0 ≥ α ≥ −1.0). Later,
Cohen (1985) considered a uniform slab of plasma as
the synchrotron source and derived smaller values of
B for the same set of (ν,Sm,α). In this section, we ex-
press B (i.e., line B in fig. 1) in terms of (ν,Sm,α) for
a uniform sphere for arbitrary optical thickness (i.e.,
for arbitrary α ≤ 0). We assume that the magnetic
field is uniform and that the distribution of radiating
particles are uniform in the configuration space and
are isotropic and power-law (eq.[19]) in the momen-
tum space.

For a uniform B and N∗
e , the transfer equation

gives the specific intensity

Iν
∗ = Aν∗5/2 [1 − exp(−αν

∗x0
∗)] , (1)

where

A(α) ≡
(

3

2

)−α
e

c

a(α)

C(α)

(

e

2πmec

)−3/2

B−1/2, (2)

and x0
∗ gives the physical thickness of the emitting

region along the line of sight; e, me, and c refer to the
charge on an electron, the rest mass of an electron,
and the speed of light, respectively. The coefficients
a(α) and C(α) are given in table 1; a quantity with

an asterisk is measured in the co-moving frame, while
that without an asterisk in the observer’s frame. At
the distance θ away from the cloud center (fig. 2),
the fractional thickness, which is Lorentz invariant,
becomes

x0
∗

2R∗ = cos(θ + ξ) =

√

1 −
[

sin θ

sin(θd/2)

]2

, (3)

where R∗ cos ξ+(R∗ sin ξ/ sin θ) cos θ = R∗/ sin(θd/2)
is used in the second equality; θd is the angular diam-
eter of the component in the perpendicular direction
of the jet propagation. Thus, the specific intensity at
angle θ away from the center, becomes

Iν(θ) =

(

δ

1 + z

)1/2

Aν5/2

×







1 − exp



−τν(0)

√

1 −
[

sin θ

sin(θd/2)

]2










, (4)

where τν(0) ≡ αν
∗ · 2R∗ is the optical depth for

θ = 0 (or b = 0). Averaging over pitch angles of the
isotropic electron power-law distribution (eq. [19]),
we can write down the absorption coefficient in the
co-moving frame as (Le Roux 1961, Ginzburg & Sy-
rovatskii 1965)

α∗
ν = C(α)r◦

2k∗
e

ν◦
ν∗

(νB

ν∗

)(−2α+3)/2

, (5)

where ν◦ ≡ c/r◦ ≡ c/[e2/(mec
2)] = 1.063× 1014 GHz

and νB ≡ eB/(2πmec). In deriving equation (4), we
utilized Iν/ν3 = Iν

∗/ν∗3 and ν/ν∗ = δ/(1+z), where
z represents the redshift and the Doppler factor, δ, is
defined by

δ ≡ 1

Γ(1 − β cosϕ)
, (6)

where Γ ≡ 1/
√

1 − β2 is the bulk Lorentz factor of
the jet component moving with velocity βc, and ϕ
refers to the viewing angle.

Even if special relativistic effects are important,
the observer find the shape to be circular. We thus
integrate Iν(θ) cos θ over the emitting solid angles
2π sin θdθ in 0 ≤ θ ≤ θd/2 to obtain the flux den-
sity

Sν = 2π

∫ θd/2

0

Iν(θ) cos θ sin θdθ

= π sin2

(

θd

2

)

·
(

δ

1 + z

)1/2
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×Aν5/2

∫ 1

0

(

1 − e−τν(0)
√

1−χ
)

dχ, (7)

where χ ≡ [sin θ/ sin(θd/2)]2.

Differentiating equation (7) with respect to ν, and
putting dSν/dν to be 0, we obtain the equation that
relates τν(0) and α at the turnover frequency, νm,

∫ 1

0

[

1 − e−τν(0)
√

1−χ
]

dχ

=

(

1 − 2

5
α

)
∫ 1

0

τν(0)
√

1 − χe−τν(0)
√

1−χdχ.(8)

We denote the solution τν(0) at ν = νm as τm(0),
which is presented as a function of α in table 1.

It is worth comparing equation (7) with that for a
uniform slab of plasma with physical thickness R∗. If
the slab extends over a solid angle π(0.5θd/rad)2, the
flux density becomes

Sν =
π

4

(

θd

rad

)2 (

δ

1 + z

)1/2

Aν5/2
(

1 − e−τν(0)
)

.

(9)
The optical depth τν(0) = α∗

ν ·2R∗ does not depend on
θ for the slab geometry. Therefore, comparing equa-
tions (7) and (9) we can define the effective optical
depth, 〈τν〉, for a uniform sphere of plasma as

e−〈τν〉 ≡
∫ 1

0

e−τν(0)
√

1−χdχ. (10)

We denote 〈τν〉 at ν = νm as 〈τm〉, which is presented
in table 1. Note that 〈τm〉 is less than τm(0) due to
the geometrical factor

√
1 − χ.

Using τm(0), we can evaluate the peak flux density,
Sm, at ν = νm and inversely solve equation (7) for B.
We thus obtain

B = 10−5b(α)
( νm

GHz

)5
(

θd

mas

)4 (

Sm

Jy

)−2
δ

1 + z
,

(11)
where θd ≪ 1 rad is used and

b(α) = 3.98 × 103

(

3

2

)−2α [

a(α)

C(α)

]2

×
{

∫ 1

0

[

1 − e−τm(0)
√

1−χ
]

dχ

}2

. (12)

The values are tabulated in table 1; they are, in fact,
close to the values obtained by Cohen (1985), who

C

Fig. 1.— Constraints on (B,N∗
e ) plane imposed by

synchrotron self-absorption and total kinetic luminos-
ity considerations (see fig. 1 in Reynolds et al. 1996).
The VLBI surface brightness constraint on B gives
line B, while the condition that the a jet component
(or the resolved core in Reynolds et al. 1996) be-
comes optically thick to self-absorption gives line C.
The horizontal lines are the proper densities derived
from the kinetic luminosity; line D1 and D2 corre-
spond to a pure pair and a pure normal plasma, re-
spectively.

2

θ d

θξR*

x0
*

Fig. 2.— Flux emitted from a spherical cloud of ra-
dius R∗.
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presented b(α) for a slab geometry with −α ≤ 1.25.
This is because the averaged optical depth, 〈τν〉 at
ν = νm, for a spherical geometry becomes compara-
ble with that for a slab geometry (Scott & Readhead
1977).

We could expand the integrant in equation (7) in
the optically thin limit τm(0) ≪ 1 as

1 − e−τm(0)
√

1−χ ≈ τm(0)
√

1 − χ, (13)

to obtain b(−0.5) = 3.34 and b(−1.0) = 3.85, for ex-
ample. This optically thin limit (τm ≪ 1) was consid-
ered by Marscher (1983), who gave b(α) for α ≥ −1.0
(i.e., for τm(0) < 1.0).

2.2. Electron density

We next consider how to constrain N∗
e (i.e., line C

in fig. 1) from the theory of synchrotron self-absorption.
To examine the lower limit of N∗

e (SSA), we consider
a conical jet geometry (fig.3) in this section, even
though we apply the results (eqs. [22]-[24]) to indi-
vidual jet components, which would be more or less
spherical rather than conical. The optical depth τ
for synchrotron self absorption at distance ρ from the
injection point, is given by

τν(ρ) =

[

ρ sin χ

sin(ϕ + χ)
+

ρ sin χ

sin(ϕ − χ)

]

αν , (14)

where ϕ is the viewing angle and αν [1/cm] refers to
the effective absorption (i.e., absorption minus stim-
ulated emission) coefficient. For a small half opening
angle (χ ≪ 1), this equation can be approximated as

τν(ρ) = 2
ρ sinχ

sin ϕ
αν , (15)

where χ/ sinϕ denotes the projected, observed open-
ing angle. Noting that ρ sinχ represents the trans-
verse thickness of the jet, we find that equation (15)
holds not only for a conical geometry but also for a
cylindrical one.

Since τν and ρ sin χ are Lorentz invariants, we ob-
tain

αν

sin ϕ
=

α∗
ν

sinϕ∗ . (16)

Since ναν is also Lorentz invariant, equation (16)
gives

sin ϕ∗

sin ϕ
=

ν

ν∗ =
δ

1 + z
. (17)

Combining equations (15) and (17), we obtain

τν =
1 + z

δ

2ρ sinχ

sin ϕ
α∗

ν =
1 + z

δ

θd

sinϕ

DL

(1 + z)2
α∗

ν ,

(18)
where DL/(1 + z)2 is the angular diameter distance
to the AGN; θd is measured in radian unit (i.e., not
in milliarcsecond). Equation (18) holds for a coni-
cal geometry with an arbitrary small opening angle,
including a cylindrical case.

We assume that the electron energy distribution is
represented by a power-law,

dN∗
e

dγ
= k∗

eγ2α−1 (γmin < γ < γmax), (19)

where N∗
e refers to the proper electron number den-

sity. Integrating dN∗
e /dγ from γmin to γmax, and as-

suming γmax ≫ γmin and α < 0, we obtain

N∗
e =

γmin
2α

−2α
k∗
e . (20)

The coefficient C(α) is given in Table 1 of Gould
(1979) and also in table 1 in this paper.

Substituting equation (5) into (18), and assuming
γmin ≪ γmax, we obtain

N∗
e B−α+1.5 =

mec

e2

(

e

2πmec

)−1.5+α
τν(α)

C(α)

γmin
2α

−2α

× sin ϕ

θd

(1 + z)2

DL

(

1 + z

δ

)−α+1.5

ν−α+2.5. (21)

Evaluating ν at νm, and combining with equation
(11), we obtain N∗

e (SSA) in cgs unit as (see also
Marscher 1983 for relatively optically thin cases, −α ≤

Fig. 3.— Schematic figure of a conical jet in the core
region with half opening angle χ in the observer’s
frame.
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Table 1: Table of constants
α 0 −0.25 −0.50 −0.75 −1.00 −1.25 −1.50 −1.75 −2.00
a 0.2833 0.149 0.103 0.0831 0.0740 0.0711 0.0725 0.0776 0.0865
C 1.191 1.23 1.39 1.67 2.09 2.72 3.67 5.09 7.23

τm(0) 0 0.252 0.480 0.687 0.878 1.055 1.220 1.374 1.519
〈τm〉 0 0.167 0.314 0.445 0.564 0.672 0.770 0.862 0.946

b 0 1.66 2.36 2.34 2.08 1.78 1.51 1.27 1.08

1.0)

N∗
e (SSA) = e(α)

γmin
2α

−2α

sinϕ

dA

(

θd

mas

)4α−7

×
( νm

GHz

)4α−5
(

Sm

Jy

)−2α+3 (

δ

1 + z

)2α−3

, (22)

where

dA ≡ zq0 + (q0 − 1)(−1 +
√

2q0z + 1)

h(1 + z)2q0
2

(23)

e(α) ≡ 1.71 × 10−9 × [2.79 × 10−8b(α)]α−1.5 × τν

C(α)
(24)

If the jet component is discontinuous (e.g., spherical),
equation (22) gives the lower limit of N∗

e (SSA), be-
cause the path length becomes smaller than 2ρ sinχ/ sinϕ
(eq. [15]).

It looks like from equation (22) that N∗
e (SSA) de-

pends on θd and νm very strongly. In the case of
α = −0.75, for instance, we obtain N∗

e (SSA) ∝
θd

−10νm
−8. Nevertheless, as a radio-emitting com-

ponents evolves along the jet, its θd increases due
to expansion while its νm decreases due to (syn-
chrotron+adiabatic) cooling. As a result, these two
effects partially cancel each other and suppress the
variations of N∗

e (SSA) along the jet.

3. Kinetic luminosity in the core region

In this section, we present a new method how to
deduce the kinetic luminosity, Lkin, of a jet in the un-
resolved VLBI core from the perpendicular core size,
utilizing the core-position offset among different fre-
quencies as an intermediate variable in manipulation.
Once Lkin is obtained for the core, we can apply it to
derive lines D1 and D2 for individual jet components,
assuming a stationary jet ejection with constant Lkin.

3.1. Scaling Law

Let us introduce a dimensionless variable r ≡ ρ/r1

to measure ρ in parsec units, where r1 = 1 pc. We

assume that the electron number density scales with
r as

N∗
e = N1r

−n, (25)

where N1 refers to the value of N∗
e at r = 1 (i.e., at 1

pc from the core in the observer’s frame). If particles
are neither created nor annihilated in a conical jet,
conservation of particles gives n = 2. In the same
manner, we assume the following scaling law:

B = B1r
−m, (26)

where B1 refers to the values of B at r = 1. In a
stationary super-fast-magnetosonic jet, the magnetic
flux conservation gives m = 1. Note that we assume
such scaling laws only in the unresolved VLBI core,
not in the jet region, for which we consider N∗

e (SSA).

We further introduce the following dimensionless
variables:

xN ≡ r1r◦
2N1,

xB ≡ νB1
/ν◦ =

eB1

2πmec
· 1

ν0
. (27)

Utilizing equation (5), and rewriting k∗
e and νB in

terms of xN and xB, we obtain from the left equality
in equation (18)

τν = C(α)
2χ

sin ϕ

−2α

γmin
2α

(

1 + z

δ

)−ǫ (

ν

ν◦

)−1−ǫ

× r1−n−mǫxNxB
ǫ, (28)

where ǫ ≡ 3/2−α. Note that both xN and xB should
be distinguished from N∗

e (SSA) and B presented in
section 2, because we are considering the core region
in this section.

At a given frequency ν, the flux density will peak
at the position where τν becomes unity. Thus setting
τ = 1 and solving equation (28) for r, we obtain the
distance from the VLBI core observed at frequency ν
from the injection point as (Lobanov 1998)

r(ν) =
[

xB
kbf(α)

ν◦
ν

]1/kr

(29)
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where

f(α) ≡
[

C(α)
2χ

sin ϕ

−2α

γmin
2α

(

δ

1 + z

)ǫ

xN

]1/(ǫ+1)

(30)

kb ≡ 3 − 2α

5 − 2α
, (31)

kr ≡
(3 − 2α)m + 2n − 2

5 − 2α
. (32)

3.2. Core-Position Offset

If we measure r(ν) at two different frequencies (say
νa and νb), equation (29) gives the dimensionless, pro-
jected distance of r(νa) − r(νb) as

∆rproj = [r(νa) − r(νb)] sinϕ

= (xB
kbfν◦)

1/kr
ν

1/kr

b − ν
1/kr

a

ν
1/kr

a ν
1/kr

b

sin ϕ.(33)

Here, ∆rproj is in pc units; therefore, r1∆rproj repre-
sents the projected distance of the two VLBI cores (in
cm, say). That is, r1∆rproj equals 4.85·10−9∆rmasDL/(1+
z)2 in equation (4) in Lobanov (1998), where ∆rmas

refers to the core-position difference in mas. Defining
the core-position offset as

Ωrν ≡ r1∆rproj
ν

1/kr

a ν
1/kr

b

ν
1/kr

b − ν
1/kr

a

, (34)

we obtain

Ωrν

r1
= (xkb

B fν◦)
1/kr sin ϕ (35)

Setting νb → ∞ in equation (33), we can express
the absolute distance of the VLBI core measured at
ν from the central engine as (Lobanov 1998)

rcore(ν) =
Ωrν

r1 sinϕ
ν−1/kr . (36)

To express xB in terms of xN and Ωrν , we solve equa-
tion (35) for xB to obtain

xB =

(

Ωrν

r1 sin ϕ

)kr/kb

(fν◦)
−1/kb . (37)

Note that xN is included in f = f(α).

We next represent xN and xB (or equivalently, N1

and B1) as a function of Ωrν . To this end, we pa-
rameterize the energy ratio between particles and the
magnetic field as

N∗
e γminmec

2 = K
B2

8π
. (38)

When an energy equipartition between the radiating
particles and the magnetic field holds, we obtain

K =
γmin

〈γ−〉
, (39)

where the averaged electron Lorentz factor, 〈γ−〉 be-
comes

〈γ−〉 ≡

∫ γmax

γmin

γ · k∗
eγ2α−1dγ

∫ γmax

γmin

k∗
eγ2α−1dγ

=
2α

2α + 1
γmin

(γmax/γmin)
2α+1 − 1

(γmax/γmin)2α − 1
. (40)

for α < 0. We assume a rough energy equipartition
holds and adopt

K ∼ 2α + 1

2α

(γmax/γmin)
2α − 1

(γmax/γmin)2α+1 − 1
. (41)

In the limit α → −0.5, the right-hand side tends to
1/ ln(γmax/γmin), which is 0.1 if γmax = 104.34γmin,
for instance. Note that we assume a rough energy
equipartition in the core and not in the jet.

In this paper, we assume that K/γmin is constant
for r. Then, equation (38) requires n = 2m. Sub-
stituting N∗

e = N1r
−2m and B = B1r

−m into equa-
tion (38), and replacing N1 and B1 with xN and xB,
we obtain

xN =
π

2

K

γmin

r1

r◦
xB

2 (42)

Combining equations (37) and (42), we obtain

xB =

[

1

ν◦

(

Ωrν

r1 sinϕ

)kr

](5−2α)/(7−2α)

×
[

πC(α)
χ

sin ϕ

K

γmin

r1

r◦

−2α

γmin
2α

(

δ

1 + z

)ǫ]−2/(7−2α)

.(43)

For ordinary values of α(< 0), xB decreases with in-
creasing K, as expected. The particle number density,
xN, can be readily computed from equation (42).

3.3. Kinetic Luminosity

When the jet has a cross section πR2
⊥ at a certain

position, Lkin and N∗
e are related by

Lkin = πR⊥
2βc·ΓN∗

e ·(Γ−1)
(

〈γ−〉mec
2 + 〈γ+〉m+c2

)

,
(44)
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where 〈γ+〉 refers to the averaged Lorentz factors of
positively charged particles, and m+ designates the
mass of the positive charge.

Assuming that the particle number is conserved,
we find that πR⊥2βc · ΓN∗

e is constant along a sta-
tionary jet. Thus, provided that Γ ≫ 1 holds, R⊥2N∗

e

can be replaced as

R⊥
2N∗

e =
Γ1

Γ
(r1χ1)

2N1 =
Γ1

Γ
χ1

2 r1

r◦2
xN, (45)

where Γ1 and χ1 refer to Γ and χ at 1 pc. Substituting
equation (45) into (44), we obtain

Lkin = CkinK
r1

2

r◦3
βΓ1(Γ − 1)

(

χ1

χ

)2

×
[

χ

ν◦

(

Ωrν

r1 sin ϕ

)kr

]2(5−2α)/(7−2α)

×
[

πC(α)

sin ϕ

K

γmin

r1

r◦

−2α

γmin
2α

(

δ

1 + z

)3/2−α
]−4/(7−2α)

; (46)

we adopt Ckin = π2〈γ−〉mec
3/γmin for a pair plasma,

while Ckin = π2〈γ+〉mpc3/(2γmin) for a normal plasma,
where mp refers to the rest mass of a proton. Equa-
tion (46) holds not only for a conical jet but also for
a general jet with Γ ≫ 1 provided that the parti-
cle number is conserved and that n = 2m holds. It
should be noted that γmin takes different values be-
tween a pair and a normal plasma.

3.4. Jet Opening Angle

Let us now consider the half opening angle of the
jet, and further reduce the expression of Lkin. As
noted in § 3.3, we obtain

χ =
R⊥
ρ

=
0.5θd,core(ν)

ρ

DL

(1 + z)2
(47)

for a conical geometry, where θd,core(ν) is the angular
diameter of the VLBI core at a frequency ν in the
perpendicular direction to the jet-propagation direc-
tion on the projected plane (i.e., a VLBI map). The
luminosity distance is given by

DL = 4.61×109h−1r1
q0z + (q0 − 1)(−1 +

√
2q0z + 1)

q0
2

.

(48)
On the other hand, equation (36) gives

ρ = rcorer1 =
Ωrν

sinϕ
ν−1/kr (49)

Substituting equations (49), (48) into (47), we obtain

1

ν0

χΩrν

r1 sinϕ
= 11.1h−1 q0z + (q0 − 1)(−1 +

√
2q0z + 1)

q0
2(1 + z)2

×
(

θd,core

mas

)

ν1/kr

ν0
. (50)

Since m = 1 is consistent with the theory of mag-
netohydrodynamics, we will adopt kr = 1 in the rest
of this paper. Then, it follows that the factor con-
taining χΩrν/ sinϕ in equation (46) can be simply
expressed in terms of θd,core(ν). That is, to evalu-
ate Lkin, we do not have to stop on the way at the
computation of Ωrν , which requires more than two
VLBI frequencies. We only need the VLBI-core size
at a single frequency, θd,core(ν), in addition to Γ, ϕ,
α, γmin, z, K, and Ckin. If we have to examine χ, we
additionally need Ωrν. The information of the com-
position is included in Ckin. In the present paper, we
assume Γχ2 = Γ1χ1

2.

If kr deviates from unity, we have to independently
examine χ and Ωrν . In another word, we need at
least two VLBI frequencies (e.g., 2 and 8 GHz) to
measure the core-position offset in order to constrain
Lkin, even if we know the value of kr by some means.

To constrain Γ in equation (46), let us briefly con-
sider how to obtain its lower bound. If the appar-
ent velocity of a radio-emitting component, βapp =
β sin ϕ/(1 − β cosϕ), reflects the fluid velocity, the
lower bound can be obtained by Γmin ≡

√

βapp
2 + 1.

On the other hand, the upper bound of Γ is not eas-
ily constrained; thus, we must consider it source by
source, using observations at different photon energies
(e.g., X-rays) if necessary.

3.5. Electron density deduced from kinetic

luminosity

Once Lkin is known by the method described above
or by some other methods, we can compute the elec-
tron number density as a function of the composi-
tion. We assume that the Lkin deduced for the core
can be applied for the individual jet components.
Then, solving equation (44), which holds not only
in the core but also in the jet, for N∗

e , and utiliz-
ing R⊥ = (θd/2)DL/(1 + z)2, we obtain for a normal
plasma

N∗
e (nml) = 5.93 × 10−2h2 L46

Γ(Γ − 1)

(

θd

mas

)−2
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×
[

q0
2(1 + z)2

zq0 + (q0 − 1)(−1 +
√

2q0z + 1)

]2

× 1

〈γ+〉
1

1 + 〈γ−〉me/mp
cm−3, (51)

where L46 = Lkin/(1046ergs s−1). If N∗
e (nml) be-

comes less than the electron density deduced indepen-
dently from the theory of synchrotron self-absorption
(SSA), the possibility of a normal plasma dominance
can be ruled out.

It is worth comparing N∗
e (nml) with N∗

e (pair), the
particle density in a pure pair plasma. If we compute
Lkin by using equation (46) and (50), we obtain the
following ratio

N∗
e (pair)

N∗
e (nml)

=
Lkin(pair)

Lkin(nml)

mpc2 + 〈γ−(nml)〉mec
2

2〈γ−(pair)〉mec2

=
γmin(nml)

γmin(pair)
, (52)

where γmin(pair) and γmin(nml) refer to γmin in a
pair and a normal plasma, respectively; 〈γ−(pair)〉
and 〈γ−(nml)〉 refer to the averaged Lorentz fac-
tor of electrons in a pair and a normal plasma, re-
spectively. Therefore, if γmin(pair) is comparable to
γmin(nml) ∼ 100, there is little difference between
N∗

e (pair) and N∗
e (nml).

3.6. Summary of the Method

Let us summarize the main points that have been
made in §§ 2 and 3.
(1) We can compute the magnetic field strength (i.e.,
line B in fig. 1) from the surface brightness condition.
(2) We can also constrain the proper electron density
and the magnetic field strength (i.e., line C) from the
synchrotron self-absorption constraint.
(3) Combing (1) and (2), we obtain the electron den-
sity, N∗

e (SSA), for each radio-emitting component.
(4) Observing the core size, θd,core(ν), at a single fre-
quency, ν, and substituting equation (50) into equa-
tion (46), we obtain the kinetic luminosity, Lkin.
(5) Assuming a normal-plasma dominance, we obtain
the proper electron density, N∗

e (nml) (i.e., line D2)
from Lkin by equation (51).
(6) If N∗

e (nml) ≪ N∗
e (SSA) holds, we can rule out the

possibility of a normal-plasma dominance and that of
a pair-plasma dominance with γmin ∼ 100 or greater.
That is, N∗

e (nml) ≪ N∗
e (SSA) indicates the domi-

nance of a pair plasma with γmin ≪ 100.

4. Application to the 3C 345 Jet

Let us apply the method described in the previ-
ous sections to the radio-emitting components in the
3C 345 jet and investigate the composition. This
quasar (z = 0.595; Hewitt & Burbidge 1993) is one of
the best studied objects showing structural and spec-
tral variabilities on parsec scales around the compact
unresolved core (for a review, see e.g., Zensus 1997).
At this redshift, 1 mas corresponds to 5.85h−1 pc,
and 1 mas yr−1 to βapp = 30.3h−1.

4.1. Kinetic luminosity

To deduce Lkin, we first consider θd,coreν/ν0, where
kr = 1 is adopted in equation (50). From the re-
ported core size at 22.2 GHz at 6 epochs by Zensus et
al. (1995), at 5 epochs by Unwin et al. (1997), and
at 3 epochs by Ros et al. (2000), we can deduce the
averaged core size, θd,core, as 0.296 mas (fig. 4); here,

we evaluate the core size with 1.8
√

ab for the latter
three epochs, where a and b refer to the major and
minor axes at the FWHM of the elliptical Gaussian
presented in Ros et al. (2000). From θd,core = 0.296
mas, we obtain θd,coreν/ν0 = 6.18 × 10−14 as the
averaged value over the 14 epochs at 22 GHz. In
the same manner, we obtain the following averaged
values at different frequencies: θd,core = 0.258 mas
and θd,coreν/ν0 = 3.64 × 10−14 over 3 epochs at 15
GHz (Ros et al. 2000); θd,core = 0.436 mas and
θd,coreν/ν0 = 4.38× 10−14 over 7 epochs at 10.7 GHz
(1 epoch from Unwin et al. 1994; 4 epochs from Zen-
sus et al. 1995; 2 epochs from Gabuzda et al. 1999);
θd,core = 0.343 mas and θd,coreν/ν0 = 2.71 × 10−14

over 7 epochs at 8.4 GHz (1 epoch from Unwin et al.
1994; 3 epochs from Zensus et al. 1995; 3 epochs
from Ros et al. 2000); θd,core = 0.423 mas and
θd,coreν/ν0 = 1.98× 10−14 over 11 epochs at 5.0 GHz
(4 epochs from Brown et al. 1994; 1 epoch from Un-
win et al. 1994; 3 epochs from Zensus et al. 1995; 3
epochs from Ros et al. 2000). Taking a weighted av-
erage of θd,coreν/ν0 over the 42 epochs at the different
5 frequencies, we obtain

θd,coreν

ν0
= 4.01 × 10−14. (53)

We next consider the spectral index that reflects
the energy distribution of the power-law electrons
in the core. From infrared to optical observations
(J,H,K,L bands from Sitko et al. 1982; J,H,K bands
from Neugebauer et al. 1982; K band from Impey et
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al. 1982; IRAS 12, 25, 60, 100 microns from Moshir
et al. 1990), we obtain

α = −1.15 (54)

for the core. This value is consistent with that
adopted by Zensus et al. (1995).

Using equations (53) and (54), we obtain from
equation (50)

(

1

ν0

χΩrν

r1 sin ϕ

)2(5−2α)/(7−2α)

= 4.97 × 10−21h−1.57.

(55)
Moreover, α = −1.15 gives

[

πC(α)
−2αK

γmin
2α+1

r1

r0

]−4/(7−2α)

= 1.31 × 10−14K−0.43γmin
−0.56. (56)

We thus obtain

Lkin = 4.68 × 1045h−1.57〈γ+〉
(γmin

100

)−1.56

K0.57

×Γ(Γ − 1)

[

1

sinϕ

(

δ

1 + z

)2.65
]−0.43

ergs s−1 (57)

for a normal plasma, that is, Ckin = π2〈γ+〉mpc3/(2γmin)
in equation (46). Note that the factor 〈γ+〉 cancels
out when we compute N∗

e (nml) by equation (51) and
hence does not affect the conclusions on the matter
content in the present paper. However, to examine
the absolute kinetic luminosity of a normal-plasma-
dominated jet, we have to independently know 〈γ+〉,
because we can constrain only the electron density by
SSA theory.

4.2. Kinematics near the core

To constrain Lkin further, we must consider the
kinematics of the core and evaluate Γ and ϕ. In the
case of the 3C 345 jet, components are found to be ‘ac-
celerated’ as they propagate away from the core. For
example, for component C4, βapph < 8 held when the
distance from the core was less than 1 mas (Zensus
et al. 1995); however, it looked to be ‘accelerated’
from this distance (or epoch 1986.0) and attained
βapph ∼ 45 at epoch 1992.5 (Lobanov & Zensus 1994).
It is, however, unlikely that the fluid bulk Lorentz fac-
tor increases so much during the propagation. If βapp

reflected the fluid bulk motion of C4, the bulk Lorentz
factor, Γ, had to be at least 45 until 1992.5. Then

βapp ∼ 6 during 1981-1985 indicates that the view-
ing angle should be less than 0.05◦, which is probably
much less than the opening angle. Analogous ‘accel-
eration’ was reported also for C3 (Zensus et al. 1995)
and C7 (Unwin et al. 1997).

On these grounds, we consider the apparent ‘ac-
celeration’ of the components in their later stage of
propagation on VLBI scales are due to geometrical ef-
fects such as ‘scissors effects’ (Hardee & Norman 1989;
Fraix-Burnet 1990), which might be created at the in-
tersection of a pair of shock waves. Such shock waves
may be produced, for example, by the interaction be-
tween relativistic pair-plasma beam and the ambient,
non-relativistic normal-plasma wind (Sol, Pelletier &
Asséo 1989; Pelletier & Roland 1989; Pelletier & Sol
1992; Despringre & Fraix-Burnet 1997; Pelletier &
Marcowith 1998). In their two-fluid model, the pair
beam could be destructed at a certain distance from
the core on VLBI scales due to the generation of Lang-
muir waves.

Then, how should we constrain Γ and ϕ for the
3C 345 jet? In this paper, we assume that the radio-
emitting components before their rapid acceleration
represent (or mimic) the fluid bulk motion. Under
this assumption, Steffen et al. (1995) fitted the mo-
tions of C4 (during 1980-1986) and C5 (during 1983-
1989) when the components are within 2 mas from the
core by a helical model. They found Γ = 5.8 for C4
and 4.6 for C5 with ϕ = 6.8◦, assuming h = 1.54 (i.e.,
H0 = 100km/s/Mpc). These Lorentz factors will be
∼ 9 and ∼ 7 for C4 and C5, respectively, if h = 1
(i.e., H0 = 65km/s/Mpc). Subsequently, Qian et al.
(1996) investigated the intrinsic evolution of C4 under
the kinematics of Γ = 5.6 and ϕ = 2◦ – 8◦, assuming
h= 1.54; the range of viewing angles is in good agree-
ment with ϕ = 2◦ (for C4) – 4◦ (for C2) at 1982.0
obtained by Zensus et al. (1995), who used a larger
value of Γ = 10 under h = 1.54, which corresponds to
Γ ∼ 15 for h = 1.

Unless a substantial deceleration takes place, the
assumption of a constant Lorentz factor is justified
as the first order of approximation. In the last part
of § 4.3, we will examine the case when the Lorentz
factor is different from this assumed value and con-
sider how the conclusion of the composition depends
on Γ. Close to the core, we adopt ϕ = 2◦, because the
viewing angle is suggested to decrease with decreas-
ing distance from the core (Zensus et al. 1995; Unwin
et al. 1997). If ϕ is less than 2◦ in the core, Lkin, and
hence N∗

e (nml) further decreases; that is, the normal-
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plasma dominance can be further ruled out. In short,
we apply K = 0.1, Γ = 15 and ϕ = 2◦ in equa-
tion (57). Assuming a normal-plasma dominance, we
adopt γmin = 102 for electron energy distribution.

4.3. Composition of individual components

We can now investigate the composition of the
radio-emitting components in the 3C 345 jet, using
their spectral information. We assume that the jet
is neither accelerated nor decelerated and apply the
Lorentz factor obtained for the (unresolved) core to all
the (resolved) jet components. To compute N∗

e (SSA),
we further need ϕ for each component at each epoch.
(Note that ϕ = 2◦ is assumed for the core, not for
the components.) For this purpose, we assume that
βapp reflects the fluid motion if βapp <

√
Γ2 − 1 and

that ϕ is fixed after βapp exceeds
√

Γ2 − 1. That is,
we compute ϕ from

tanϕ =



















2βapp

βapp
2 + δ2 − 1

if βapp <
√

Γ2 − 1

1
√

Γ2 − 1
if βapp >

√
Γ2 − 1

(58)

The constancy of ϕ when βapp >
√

Γ2 − 1 = 15.0
could be justified by the helical model of Steffen et
al. (1995), who revealed that the viewing angle does
not vary significantly after the component propagates
a certain distance (about 1 mas in the cases of com-
ponents C4 and C5) from the core. As we will see
in table 2 (later in this subsection), ϕ increases with
increasing distance from the core and do not deviate
significantly from the assumed value for the core (2
degree).”

The synchrotron self-absorption spectra of individ-
ual components are reported in several papers. They
were first reported in Unwin et al. (1994), who pre-
sented (νm,Sm,α) and θd (or ξ in their notation) of
components C4 and C5 at epoch 1990.7. Subse-
quently, Zensus et al. (1995) gave (νm,Sm,α), θd,
and βapph for C2, C3, and C4 at 1982.0. However,
the errors are given only for θd; therefore, we eval-
uate the errors of the output parameters, δ, ϕ, B,
N∗

e (nml), and N∗
e (nml)/N∗

e (SSA), using the errors in
θd alone for C2, C3, and C4 at 1982.0. Later, Unwin
et al. (1997) presented (νm,Sm,α), θd, and βapph of
C5 (at 1990.55) and C7 (at 1992.05, 1992.67, 1993.19,
and 1993.55). More recently, Lobanov and Zensus
(1999) presented a comprehensive data of (νm,Sm,α)
of C3, C4, and C5 at various epochs. We utilize

θd = 0.114 + 0.0658(epoch − 1979.50) for C4 (Qian
et al. 1996), θd = 0.114 + 0.0645(epoch − 1980.00)
for C5, which is obtained from the data given in
Zensus et al. (1995) and Unwin et al. (1997), and
θd = 0.09 + 0.45(ρ sinϕ/mas) for C3 (Biretta et al.
1986), where ρ sin ϕ refers to the projected distance
from the core.

The results for individual components at various
epochs are given in table 2 for K = 0.1. It follows
that the ratio, N∗

e (nml)/N∗
e (SSA) becomes less than

1 if the magnetic field is an acceptable strength, (e.g.,
B < 100mG). For C4, we cannot rule out the possi-
bility of a normal-plasma dominance at epochs 1985.8
and 1988.2. Nevertheless, at these two epochs, un-
natural input parameters (α = −0.2 at epoch 1985.8
and Sm = 0.8 Jy at epoch 1988.2) give too large
B (> 380mG) for a moderate δ(< 30). If we in-
stead interpolated Sm and α at epochs 1985.8 and
1988.2 from those at epochs 1983.4 and 1990.7, we
would obtain reasonable values B = 70 mG and
N∗

e (nml)/N∗
e (SSA) = 0.28 at epoch 1985.8, and B =

50 mG and N∗
e (nml)/N∗

e (SSA) = 0.046 at epoch
1988.2. On the other hand, C5 at 1984.2 gives un-
usual value N∗

e (SSA) = 3.7 × 105cm−3. It is due to
the unnaturally small value of νm(= 2.5 GHz) in the
early stage of its evolution.

For an assumed Lorentz factor Γ = 15 throughout
the jet, we present the results of N∗

e (nml)/N∗
e (SSA) as

a function of the projected distance ρ sinϕ in figure 5.
The horizontal solid line represents N∗

e = N∗
e (nml).

It should be noted that 〈γ−〉 ∼ 103 holds in equa-
tion (51) for a normal plasma. Thus, the solid line
gives the upper limit of N∗

e (nml)/N∗
e (SSA). What has

be noticed is that the possibility of a normal-plasma
dominance can be ruled out if N∗

e (nml)/N∗
e (SSA) ≪ 1

holds. There is also depicted a horizontal dashed line
representing 0.01N∗

e (nml)/N∗
e (SSA) ≈ N∗

e (pair)/N∗
e (SSA)

(see eq. [52]). If the ratio appears near the dashed
line, it indicates that the homogeneous component
is pair dominated. The horizontal dotted line cor-
responds to (2/1836)N∗

e (nml)/N∗
e (SSA). If the ratio

appears under this line, it means that Lkin is underes-
timated for that particular component. If νm resides
within the observed frequency range, the point and
error bar is indicated by thick pen, whereas if νm re-
sides outside of the observed frequency range (i.e., if
νm is extrapolated and hence contains a large error
together with Sm) it is indicated by thin one. The
two points appearing above the solid line correspond
to C4 at 1985.8 and 1988.2, which have the unnat-
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ural input parameters as discussed in the foregoing
paragraph.

It follows from the figure that the upper bound
of the 68%-error bars for the 11 epochs appear be-
low 0.1, and hence that the jet is likely pair-plasma
dominated, provided Γ ∼ 15. (C5 at 1984.2 is
not counted in the 11 epochs, because it gives too
small N∗

e (nml)/N∗
e (SSA) value.) For a smaller Γ,

N∗
e (nml)/N∗

e (SSA) further decreases. However, in
this case, the ratio appears lower than the dotted line,
indicating that Lkin is underestimated for those jet
components with Γ < 15, or that 〈γ+〉 ≫ 1 holds for
a normal plasma composition. The ratio shows no
evidence of evolution as a function of the projected
distance, ρ sinϕ, under the assumption of a constant
Γ.

It is noteworthy that N∗
e (nml)/N∗

e (SSA) is pro-
portional to (γmin/100)−2α−1.56 for the spectral in-
dex of −1.15 for the core. Therefore, for a typical
spectral index α ∼ −0.75 for the jet components, the
dependence on γmin virtually vanishes. That is, the
conclusion does not depend on the assumed value of
γmin ∼ 100 for a normal plasma.

If we assume instead Γ = 20 (rather than Γ = 15)
and ϕ = 2◦, we obtain the following kinetic luminosity

Lkin = 1.3×1046h−1.57〈γ+〉
(γmin

100

)−1.56

K0.56ergs s−1.

(59)
Evaluating the viewing angles of individual compo-
nents by equation (58) with Γ = 20, we can compute
N∗

e (nml)/N∗
e (SSA) as presented in figure 6. It follows

from this figure that we cannot rule out the possibility
of a normal-plasma dominance for such large Lorentz
factors. The greater Γ we assume, the greater be-
comes N∗

e (nml)/N∗
e (SSA).

5. Application to the 3C 279 Jet

Let us next consider the 3C 279 jet. This quasar
(z = 0.538) was the first source found to show su-
perluminal motion (Cotton et al. 1979; Unwin et al.
1989). At this redshift, 1 mas yr−1 corresponds to
βapp = 28.2h−1.

5.1. Kinetic luminosity

In the same manner as in 3C 345 case, we first
consider θd,coreν/ν0. Since the turnover frequency
of the core is reported to be about 13 GHz (Un-
win et al. 1989), we measure θd,core at ν ≤ 10.7

Fig. 4.— Angular core size of the 3C 345 core at 22.2
GHz. The horizontal line represents the bet fit value.

Fig. 5.— The ratio N∗
e (nml)/N∗

e (SSA) as a function
of the distance from the core. Above the solid, hori-
zontal line, the dominance of a normal plasma is al-
lowed. Γ = 15 is assumed.
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GHz (i.e., optically thick frequency range). At 10.7
GHz, θd,core is reported to be 0.79 mas from five-
epoch observations by Unwin et al. (1989), and 0.61
mas from three-epoch observations by Carrara et al.
(1993). With one-epoch VSOP (VLBI Space Obser-
vatory Programme) observation, θd,core = 1.8 × 0.28
mas and θd,core = 1.8×1.95 mas were obtained at 4.8
GHz and 1.6 GHz, respectively (Piner et al. 2000).
As the weighted mean over the 10 epochs, we obtain

θd,coreν

ν0
= 6.6 × 10−14, (60)

which leads to

1

ν0

χΩrν

r1 sin ϕ
= 2.8h−1

(

θd,core

mas

)

ν

ν◦

= 3.7 × 10−13. (61)

We next consider the spectral index of the core in
the optical thin frequencies. From mm to IRAS (90-
150 GHz and 270-370 GHz) observations, Grandi et
al. (1996) reported

α = −1.2. (62)

Adopting this value as the spectral index that reflects
the energy distribution of the power-law electrons in
the core, we obtain

(

1

ν0

χΩrν

r1 sin ϕ

)2(5−2α)/(7−2α)

= 2.7 × 10−20h−1.57.

(63)
and

[

πC(α)
−2αK

γmin
2α+1

r1

r0

]−4/(7−2α)

= 1.81 × 10−14K−0.43γmin
−0.56. (64)

If we assume a normal plasma dominance, we obtain

Lkin = 3.0 × 1046h−1.57
(γmin

100

)−1.56

K0.57

× Γ(Γ − 1)

[

1

sin ϕ

(

δ

1 + z

)2.7
]−0.43

ergs s−1.

(65)

5.2. Kinematics near the core

We now consider Γ and ϕ near to the core to con-
strain Lkin further. The apparent superluminal veloc-
ities of the components in the 3C 279 jet do not show

the evidence of acceleration and are roughly constant
during the propagation. For example, Carrara et al.
(1993) presented βapp = 4.51h−1 for C3 during 1981
and 1990 over 15 epochs at 5, 11, and 22 GHz and
βapp = 4.23h−1 for C4 during 1985 and 1990 over
15 epochs at 11 and 22 GHz. We thus assume that
the apparent motion of the components represent the
fluid bulk motion and that both Γ and ϕ are kept
constant throughout this straight jet. Since βapp does
not differ very much between C3 and C4, we adopt
βapp = 4.51 as the common value and apply the same
Γ and ϕ for these two components. The errors in-
curred by the difference in βapp are small.

The lower bound of Γ can be obtained as Γ >
√

βapp
2 + 1 = 4.61. The upper bound of Γ, on the

other hand, can be obtained by the upper bound of δ
for a given βapp = 4.51. In general, the upper bound
of δ is difficult to infer. In the case of 3C 279, however,
it is reasonable to suppose that a substantial fraction
of the X-ray flux in the flaring state is produced via
synchrotron self Compton (SSC) process. Therefore,
the Doppler factors ∼ 3.9 (Mattox et al. 1993) and
∼ 5 (Henri et al. 1993) derived for the 1991 flare,
and ∼ 6.3 (Wehrle et al. 1998) for the X-ray flare in
1996, give good estimates. We thus consider that δ
does not greatly exceed 10 for the 3C 279 jet. Im-
posing δ < 10, we obtain Γ < 6.06 from βapp = 4.61.
Combining with the lower bound, we can constrain
the Lorentz factor in the range 4.6 < Γ < 6.1.

As case 1, we adopt the smallest bulk Lorentz
factor, Γ = 4.61, which results in ϕ = 12.5◦ and
δ = 4.6 for βapp = 4.51. It is worth comparing this
δ with that measured in the quiescent state; Unwin
derived δ = 3.6+4.0

−1.6 so that the calculated X-ray flux
may agree with the observation. Moreover, from the
RXTE observation in the 0.1-2.0 keV band during
1996.06 and 1996.11, Lawson and McHardy (1998)
obtained 2µJy in the quiescent state during 1996.49–
1996.54 from 16-epoch observations. Applying this
X-ray flux density to the spectral information (νm,
Sm, α) and θd (table 3) for component C4 at epochs
1987.40 and 1989.26 and component C3 at 1984.05,
we obtain δ > 1.9, > 4.0, and > 3.3, respectively.
Therefore, we can regard that the value of δ = 4.6 are
consistent with the X-ray observations. In this case,
equation (65) gives

Lkin = 7.2×1046K0.57〈γ+〉
(γmin

100

)−1.6

h−1.6 ergs s−1 (case 1).

(66)

As case 2, we adopt a large Lorentz factor of
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Γ = 6.0. In this case, βapp = 4.51 gives δ = 9.8 and
ϕ = 4.45◦. There is, in fact, another branch of solu-
tion that gives smaller Doppler factor of 2.2; however,
this solution gives too large N∗

e (SSA)’s (∼ 105cm−3).
We thus consider only the solution giving δ = 9.8 as
case 2, which results in

Lkin = 3.5×1046K0.57〈γ+〉
(γmin

100

)−1.6

h−1.6 ergs s−1 (case 2).

(67)
We will examine these two cases in the next subsec-
tion.

5.3. Composition of individual components

For the jet component C3, Unwin et al. (1989)
presented νm = 6.8 GHz, Sm = 9.4 Jy, α = −1.0,
and θd = 0.95 mas at epoch 1983.1 (table 3). It was
also reported in their paper that the flux densities
were 5.13 ± 0.14 Jy at 5.0 GHz (at epoch 1984.25),
4.49± 0.17 Jy at 10.7 GHz (1984.10), and 2.58± 0.18
Jy at 22.2 GHz (1984.09) for C3. We model-fit the
three-frequency data by the function

Sν = A1

[

1 − exp(−A2ν
α−2.5)

]

. (68)

Assuming α = −1.0, we obtain νm = 6.6 GHz and
Sm = 5.9 Jy as the best fit at epoch 1984.10.

For C4, Carrara et al. (1993) presented νm ∼ 11
GHz, Sm ∼ 4.3 Jy, α = −0.9, and θd ∼ 0.6 mas from
their 1989-1990 maps at 5, 11, and 22 GHz. At epoch
1987.4, we use the flux density of 1.43± 0.17 Jy at 22
GHz (Carrara et al. 1993) and that of 3.95± 0.20 Jy
at 5 GHz (Gabuzda et al. 1999). We extrapolate the
flux density at 11 GHz from those at 1988.17, 1989.26,
and 1990.17 presented in Carrara et al. (1993) to ob-
tain 3.60±0.20 Jy. Assuming α = −0.9, we can model
fit the three-frequency data to obtain νm = 6.4 GHz
and Sm = 4.4 Jy. At this epoch (1987.4), component
C4 is located about 1 mas from the core; therefore,
the angular size vs. distance relation (Carrara et al.
1993) gives θd ∼ 0.6 mas. The input parameters for
C3 and C4 at these 4 epochs are summarized in ta-
ble 3.

In case 1 (see § 5.2), we obtain N∗
e (SSA) = 4.3 ×

103 and 3.0 × 104, for C3 at 1983.1 and 1984.10, and
8.0× 103 and 6.4× 101 for C4 at 1987.4 and 1989.26,
respectively. These large values of N∗

e (SSA) in the
first three epochs result in such (un-physically) small
values of N∗

e (nml)/N∗
e (SSA) as 1.4×10−4, 2.9×10−5,

and 1.9 × 10−4. Since even a pair-plasma dominance
should be ruled out for N∗

e (nml)/N∗
e (SSA) ≪ 100 (see

eq. [52]), we consider that the value of δ(= 4.6) is
underestimated.

We next examine case 2, in which a larger Doppler
factor (= 9.8) is adopted. In this case, we obtain
reasonable values of B and N∗

e (SSA) as presented in
table 3. It follows that the ratio N∗

e (nml)/N∗
e (SSA)

becomes 4.3 × 10−3 and 8.7 × 10−3, for C3 at 1983.1
and 1984.10, and 5.0×10−3 and 0.62 for C4 at 1987.4
and 1989.26, respectively. If δ exceeds 10 (or equiv-
alently, if Γ exceeds 6), the density ratio for C4 at
1989.26 becomes close to unity; therefore, we cannot
rule out the possibility of a normal-plasma dominance
for such large Doppler factors.

On these grounds, we can conclude that the jet
components are dominated by a pair plasma with
γmin ≪ 100, provided that δ < 10 holds, in the first
three epochs. For the last epoch (1989.26), the 68%-
error bar of N∗

e (nml)/N∗
e (SSA) appears above 0.1;

thus, we cannot rule out the possibility of a normal-
plasma dominance. If δ is as small as 5, not only
a normal-plasma dominance but also a pair-plasma
dominance should be ruled out for the first three
epochs. Thus, we consider δ is greater than 5 for
the 3C 379 jet.

6. Discussion

In summary, we derived a general scheme to infer
the kinetic luminosity of an AGN jet using a core
size observed at a single VLBI frequency. The kinetic
luminosity gives an electron density as a function of
the composition of the jet. If the density deduced
under the assumption of a normal-plasma dominance
becomes much less than that obtained independently
from the theory of synchrotron self-absorption, we can
exclude the possibility of a normal-plasma dominance.
Applying this method to the 3C 345 jet, we found that
components C2, C3, C4, C5, and C7 are dominated
by a pair plasma with γmin ≪ 100 at 11 epochs out of
the total 21 epochs examined, provided that Γ < 15
holds throughout the jet. We also investigated the
3C 279 jet and found that components C3 and C4 are
dominated by a pair plasma with γmin ≪ 100 at three
epochs out of the four epochs examined, provided that
δ < 10.

It is noteworthy that the kinetic luminosity com-
puted from equations (46) and (50) has, in fact, weak
dependence on the composition. Substituting Ckin for
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a pair and a normal plasma, we obtain

Lkin(pair)

Lkin(nml)
=

me〈γ−(pair)〉/γmin(pair)

mp/2γmin(nml)

=
1

9.18

〈γ−(pair)〉
γmin(pair)

γmin(nml)

100
. (69)

It follows from equation (40) that 〈γ−(pair)〉/γmin(pair) ∼
3 holds for α = −0.75, for instance. Thus, we ob-
tain comparable kinetic luminosities irrespectively of
the composition assumed, if we evaluate them by the
method described in § 3.

Let us examine the assumption of K ∼ 0.1. For a
typical value of α = −0.75, we obtain (〈γ−〉/γmin)K =
(δeq/δ)17/2, where δeq refers to the “equipartition
Doppler factor” defined by (Readhead 1994)

δeq ≡
{

10−3−6αF (α)34d(z)2

× (1 + z)17−2ανm
−35−2αSm

16θd
−34

}1/(13−2α)
,

(70)

where

d(z) ≡ 0.65h

q0z + (q0 − 1)(−1 +
√

2q0z + 1)
, (71)

and F (α) is given in Scott and Readhead (1977); νm,
Sm, and θd are measured in GHz, Jy, and mas, re-
spectively. Therefore, we can expect a rough energy
equipartition between the radiating particles and the
magnetic field if δeq is close the δ derived indepen-
dently.

Substituting the input parameters presented in ta-
ble 2, we can compute δeq’s for the 3C 345 jet. The
computed δeq ranges between 1.1 and 67 except for
component C5 at 1984.2, which gives δeq = 736 due
to unnaturally small νm. If we singled out this epoch,
we would obtain δeq = 23±9. The resultant magnetic
field strength, B = 6.7 ± 6.4 mG, is reasonable. For
the 3C 279 jet, we obtain δeq = 9.5 ± 1.5 and 12 ± 8
mG for the four epochs examined.

Since δeq = 23 ± 9 for 3C 345 is consistent with
those presented in table 2 and since δeq = 9.5±1.5 for
3C 279 is consistent with those in table 3, we can ex-
pect a rough energy equipartition in these two blazer
jets. However, it may be worth noting that the en-
ergy density of the radiating particles dominates that
of the magnetic field if δ becomes much smaller than
δeq. Such a case (δ = 4 ∼ 12) was discussed by Unwin
et al. (1992; 1994; 1997) for the 3C 345 jet, assuming
that a significant fraction of the X-rays was emitted

via SSC from the radio-emitting components consid-
ered.

We finally discuss the composition variation along
the jet. In the application to the two blazers, we as-
sumed constant Lorentz factors (Γ) throughout the
jet. However, Γ may in general decrease with increas-
ing distance from the central engine. If the decrease
of Γ is caused by an entrainment of the ambient mat-
ter (e.g., disk wind) consisting of a normal plasma, it
follows from equation (51) that N∗

e (nml) and hence
N∗

e (nml)/N∗
e (SSA) increases at the place where the

entrainment occurs. (Note that the kinetic luminosity
will not decrease due to an entrainment in a station-
ary jet.) Therefore, the change of composition from a
pair plasma into a normal plasma along the jet may
be found by the method described in this paper.

To study further the change of the composition, we
need detailed spectral information (νm, Sm, α) of in-
dividual components along the jet. To constrain the
spectral turnover accurately, we must model-fit and
decompose the VLBI images from high to low fre-
quencies; in another word, spatial resolution at low
frequencies is crucial. Therefore, simultaneous obser-
vations with ground telescopes at higher frequencies
and with space+ground telescopes at lower frequen-
cies are essential for this study.
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Gómez, J. L., Alberdi, A., & Marcaide, J. M. 1993,
AA 274, 55
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Table 2: Input parameters and the results for the 3C 345 jet when Γ = 15.

epoch ρ sin ϕ† βapph† ν†
m S†

m α† θ†

d
δ ϕ B N∗

e (SSA) N∗
e (nml)/N∗

e (SSA)
mas GHz Jy mas deg mG cm−3 (68 % errors)

component C2

1982.00a 4.9 12.9 1.5 2.0 -0.60 2.15 ± .18 22.5 2.2 1.4E1 6.2E-4 2.5E-1 ( 1.3E-1, 4.5E-1)

component C3

1981.50b 2.0 8.7 2.7 ± 0.3 2.4 ± 0.2 -0.80 1.00 27.2 1.2 9.7E0 2.9E-2 2.4E-2 ( 8.6E-3, 6.1E-2)
1982.00a 2.2 9.2 2.6 2.1 -0.70 0.97 ± .07 26.8 1.3 9.5E0 1.5E-2 5.1E-2 ( 2.8E-2, 8.7E-2)

component C4

1982.00a 0.4 6.2 14.6 7.6 -0.30 0.29 ± .02 28.6 .82 2.7E1 2.2E-2 3.9E-1 ( 2.5E-1, 5.8E-1)

1983.40b 0.7 6.0 11.6 ± 0.4 7.5 ± 0.6 -0.50 0.37 28.7 .81 2.9E1 4.0E-2 1.3E-1 ( 8.6E-2, 1.9E-1)

1985.80b 1.0 7.9 9.4 ± 0.6 1.9 ± 0.1 -0.20 0.53 27.7 1.1 3.9E2 2.3E-5 1.1E2 ( 7.2E1, 1.6E2)
1988.20a 2.0 14.2 6.5 ± 1.4 0.8 ± 0.1 -0.60 0.69 19.7 2.8 1.2E3 2.4E-5 6.1E1 ( 9.5E0, 2.8E2)
1990.70c 4.3 14.0 2.0 ± 0.5 2.0 ± 0.5 −0.75 ± .15 0.85 20.3 2.6 1.2E0 3.8E0 2.6E-4 ( 1.4E-5, 3.8E-3)
1992.50b 4.3 13.4 2.7 ± 1.6 1.6 ± 0.1 -0.70 0.97 21.7 2.4 1.6E1 1.5E-2 5.0E-2 ( 1.5E-3, 5.5E0)

component C5

1984.20b 0.3 5.0 2.5 ± 0.4 4.9 ± 1.1 -0.80 0.27 29.1 .67 9.0E-3 3.7E+5 2.6E-8 ( 4.8E-9, 1.4E-7)

1985.80b 0.6 6.4 6.0 ± 0.3 3.3 ± 0.3 -0.60 0.37 28.5 .86 5.7E0 4.0E-1 1.3E-2 ( 7.6E-3, 2.2E-2)
1987.30b 0.9 7.5 7.0 ± 0.6 5.1 ± 0.2 -0.80 0.47 28.0 1.0 1.3E1 6.2E-1 5.2E-3 ( 2.4E-3, 1.0E-2)

1988.20b 1.1 8.0 7.5 ± 0.4 5.6 ± 0.5 -0.70 0.53 27.6 1.1 2.4E1 7.9E-2 3.2E-2 ( 1.8E-2, 5.6E-2)

1989.20b 1.4 8.6 2.5 ± 1.4 4.7 ± 0.6 -0.90 0.59 27.2 1.2 2.0E-1 9.1E2 2.3E-6 ( 6.1E-8, 3.5E-4)

1990.30b 1.7 9.3 2.5 ± 1.2 3.6 ± 0.1 -0.90 0.66 26.7 1.3 5.2E-1 9.3E1 1.8E-5 ( 5.0E-7, 1.1E-3)
1990.55d 1.8 9.5 2.7 ± 0.5 3.2 ± 0.5 -0.75 0.80 26.5 1.4 2.2E0 8.2E-1 1.4E-3 ( 2.4E-4, 6.5E-3)
1990.70c 1.7 11.3 2.7 ± 1.5 3.2 ± 0.9 −0.75 ± .15 0.80 ± .20 24.8 1.7 2.1E0 1.4E0 7.9E-4 ( 1.5E-5, 4.2E-1)
1992.50b 2.3 11.2 2.2 ± 0.8 1.5 ± 0.3 -0.90 0.81 24.9 1.7 3.4E0 8.5E-1 1.3E-3 ( 4.7E-5, 3.3E-2)

component C7

1992.05d 0.1 2.8 12.8 ± 0.5 4.6 ± 0.5 -0.75 0.20 ± .04 29.7 .36 1.1E1 2.7E0 6.6E-3 ( 1.0E-3, 3.1E-2)

1992.67d 0.2 6.0 12.5 ± 1.0 7.0 ± 0.5 -0.75 0.35 ± .02 28.7 .80 3.9E1 2.1E-1 2.8E-2 ( 1.1E-2, 6.1E-2)

1993.19d 0.4 10.5 11.6 ± 0.5 5.1 ± 0.5 -0.75 0.41 ± .02 25.7 1.6 8.6E1 6.0E-2 7.0E-2 ( 3.5E-2, 1.3E-1)
1993.55d 0.5 14.5 11.0 ± 1.5 3.1 ± 1.0 -0.75 0.38 ± .02 20.9 2.6 1.1E2 8.8E-2 5.3E-2 ( 8.9E-3, 4.1E-1)

† For the input parameters, 1 σ errors are presented if they are given in the litearture.
a Input parameters are cited from Zensus et al. (1995).
b Input parameters are cited from Lobanov and Zensus (1999).
c Input parameters are cited from Unwin et al. (1994).
d Input parameters are cited from Unwin et al. (1997).
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Table 3: Input parameters and the results for the 3C 279 jet in case 2.

epoch ρ sinϕ βapph νm Sm α θd δ ϕ B N∗
e (SSA) N∗

e (nml)/N∗
e (SSA)

mas GHz Jy mas deg mG cm−3 (68 % errors)
component C3

1983.10a 1.4 4.5 6.8 9.4 -1.0 0.95 9.8 4.5 1.8E1 3.5E1 4.3E-3 ( 3.6E-3, 5.0E-3)
1984.10b 1.4 4.5 6.5 8.9 -1.0 0.80 9.8 4.5 8.2E0 2.5E2 8.7E-4 ( 7.3E-4, 1.0E-3)

component C4

1987.40b 1.0 4.2 6.4 4.4 -0.9 0.60 9.8 4.5 9.8E0 7.7E1 5.0E-3 ( 4.1E-3, 5.7E-3)
1989.26c 1.2 4.2 11.0 4.3 -0.9 0.60 9.8 4.5 1.6E2 6.2E-1 6.2E-1 ( 2.9E-1, 1.3E0)

a Input parameters are cited from Unwin et al. (1989).
b Input parameters are computed in this paper (see text).
c Input parameters are cited from Carrara et al. (1993).
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